A.0
B.715
C.12
D.512
D
Đáp án D
Ta có
2k3+8k2+6k−1k2+4k+3=2kk+1k+3k+1k+3−1k+1k+3=2k−121k+1−1k+3
⇒∑k=1n2k3+8k2+6k−1k2+4k+3=∑k=1n2k−121k+1−1k+3
=2.1+2+...+n−1211+1−11+3+...+1n−1+1−1n−1+3+1n+1−1n+3
=2nn+12−1212+13−1n+2−1n+3=nn+1−1256−2n+5n+2n+3
suy ra
limn2+n−∑k=1n2k3+8k2+6k−1k2+4k+3=limn2+n−n2+n−512+2n+52n+2n+3
=lim512−2n+52n2+10n+12=lim512−lim2n+5n22+10n+12n2=512
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247