Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0, b > 0, c > 0

Câu hỏi :

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I(1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Chọn đẳng thức không đúng khi nói về a, b, c?

A. a + b + c = 12

B. a2+b=c+6

C. a + b + c = 18

D. a + b - c = 0

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Phương trình mặt phẳng ABC:xa+yb+zc=1 

IABC1a+2b+3c36abc3abc162 

Thể tích khối tứ diện OABC được tính là V=OA.OB.OC6=abc61626=27 

Dấu “=” xảy ra khi 1a=2b=3c=13a=3b=6c=9 

Kiểm tra thấy phương án A không đúng

Copyright © 2021 HOCTAP247