Cho hàm số f(x) = x^3 - 6x^2 + 9x + 1 có đồ thị (C). Có bao nhiêu tiếp tuyến của đồ thị (C) tại điểm thuộc đồ thị (C)

Câu hỏi :

Cho hàm số fx=x3-6x2+9x+1 có đồ thị (C). Có bao nhiêu tiếp tuyến của đồ thị (C) tại điểm thuộc đồ thị (C) có tung độ là nghiệm phương trình 2f'x-x.f''x-6=0?

A. 1

B. 4

C. 2

D. 3

* Đáp án

A

* Hướng dẫn giải

Đáp án A.

Ta có f'x=3x2-12x+9f''x=6x+12;x

Khi đó 2f'x-x.f''x-6=022x2-12x+9-x6x-12-6=0x=1. 

Theo bài ra, ta có fx0=1x03-6x02+9x0+1=1[x0=0x0=3. 

Vậy có 2 tiếp tuyến của đồ thị hàm số (C) đi qua điểm có tung độ bằng 1.

Copyright © 2021 HOCTAP247