Cho tam giác SAB vuông tại A, đường phân giác trong của ABS = 60 độ cắt SA tại điểm I

Câu hỏi :

Cho tam giác SAB vuông tại A, ABS = 60° đường phân giác trong của ABS  cắt  SA tại điểm I. Vẽ nửa đường tròn tâm I bán kính IA (như hình vẽ). Cho SAB và nửa đường tròn trên quay quanh cạnh  SA tạo nên các khối tròn xoay tương ứng có thể tích V1,V2. Khẳng định nào dưới đây đúng?

A. 4V1=9V2

B. 9V1=4V2

C. V1=3V2

D. 2V1=3V2

* Đáp án

A

* Hướng dẫn giải

Đáp án A.

Đặt SA = h tam giác SAB vuông tại A AB=SAtan60°=h3. 

Tam giác IAB vuông tại A tanIBA^=IAABIA=h3. 

Khi quay tam giác SAB quay trục SA, ta được khối nón có chiều cao h, bán kính r=h3

Và quay nửa đường tròn quanh trục SA, ta được khối cầu có bán kính R=h3

Vậy V1=13πr2h=13π.h32h=πh39V2=43πR2=43πh33=4πh381V1V2=19:481=944V1=9V2.

Copyright © 2021 HOCTAP247