Có bao nhiêu giá trị thực của tham số m để đồ thị hàm số

Câu hỏi :

Có bao nhiêu giá trị thực của tham số m để đồ thị hàm số y=x4-2mx2+m-1  có ba điểm cực trị tạo thành một tam giác có bán kính đường tròn ngoại tiếp chúng bằng 1?

A. 1

B. 2

C. 3

D. 4

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Xét hàm số y=x4-2mx2+m-1, có y'=4x3-4mx=0[x=0x2=m. 

Để hàm số có 3 điểm cực trị khi và chỉ khi m > 0. 

Khi đó, gọi A(0;m - 1), B(m;-m2+m-1) và C(-m;-m2+m-1) là 3 điểm cực trị của ĐTHS.

Gọi H là trung điểm của BC suy ra H0;-m2+m-1AH=m2. 

Diện tích tam giác ABC là SABC=12.AH.BC=12m2.2m=m2m. 

Và AB=AC=m4+m suy ra SABC=AB.AC.BC4RABCAB2.BC=4SABC 

m4+m.2m=4m2mm4-2m2+m=0mm3-2m+1=0. 

Kết hợp với m > 0 suy ra có 2 giá trị m cần tìm.

Copyright © 2021 HOCTAP247