Cho hàm số f(0;+pi) thỏa mãn điều kiện f(tan2x)=tan^4x+1/tan^4(x)

Câu hỏi :

Cho hàm số f0;+π thỏa mãn điều kiện

A. 196

B. 1

C. 169

D. 196π

* Đáp án

A

* Hướng dẫn giải

Đặt

Ta có 

t=2tan1-tan2x2t=1tanx-tanx4t2=1tan2x+tan2x-2

Từ đó 

4t2+22=1tan2x+tan2x21tan4x+tan4x=16t4+16t2+2

Lúc đó ft=16t4+16t2+2 với t = tan(2x)

Khi x0;π4 thì t = tan(2x) và liên tục trên miền đó nên ta có: ft=16t4+16t2+2

Bắt đầu từ đây ta có: 

fsinx+cosx=16sin4x+16sin2x+2+16cos4x+16cos2x+2=161sin4x+1cos4x+161sin2x+1cos2x+4

Áp dụng bất đẳng thức Cauchy, ta có:

1sin4x+1cos4x2sin2xcos2x=8sin22x8x0;π21sin2x+1cos2x2sinxcosx=4sin2x4x0;π2

Cuối cùng ta thu được f(sinx) + f(cosx)196

Dấu bằng xảy ra khi và chỉ khi x=π4

Đáp án A

Copyright © 2021 HOCTAP247