Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = 2a

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = 2a. Gọi B’, D’ lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SD. Mặt phẳng (AB’D’) cắt cạnh SC tại C’. Tính thể tích của khối chóp S.AB’C’D’.

A. a33

B. 16a345

C. a32

D. a322

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Gọi O là tâm của hình vuông ABCD, nối SOB'D'=I

Và nối AI cát SC tại C’ suy ra mp (AB’D’) cắt SC tại C’.

Tam giác SAC vuông tại A, có SC2=SA2+AC2=6a2SC=a6

Ta có BCSABBCAB' và SBAB'AB'SC

Tương tự AD'SC suy ra SC(AB'D')(AB'C'D')SCAC'.

Mà SC'.SC=SA2SC'SC=SA2SC2=23 và SB'SB=SA2SB2=45

Do đó VS.AB'C'=815VS.ABC=830VS.ABCD mà VS.ABCD=13.SA.SABCD=2a33

Vậy thể tích cần tính là VS.AB'C'D'=2.VS.AB'C'=16a345

Copyright © 2021 HOCTAP247