Trong không gian với hệ trục tọa độ Oxyz, cho A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c dương

Câu hỏi :

Trong không gian với hệ trục tọa độ Oxyz, cho A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c dương. Biết A, B, C di động trên các tia Ox, Oy, Oz sao cho a + b + c = 2. Biết rằng a, b, c thay đổi thì quỹ tích tâm hình cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng (P) cố định. Tính khoảng cách từ M(2016;0;0) tới mặt phẳng (P).

A. 2017

B. 20143

C. 20163

D. 20153

* Đáp án

D

* Hướng dẫn giải

Đáp án D.

Gọi D, K lần lượt là trung điểm của AB, OC. Từ D kẻ đường  thẳng vuông góc với mặt phẳng (OAB). Và cắt mặt phẳng trung trực của OC tại II là tâm mặt cầu ngoại tiếp tứ diện OABC suy ra z1=c2

Ta có SOAD=12.SOAB=14.ab=12.DE.OADE=b2

Tương tự DF=a2x1=a2,y=b2Ia2;b2;c2

Suy ra x1+y1+z1=a+b+c2=1IP:x+y+z-1=0

Vậy khoảng cách từ điểm M dến (P) bằng d=20153.

Copyright © 2021 HOCTAP247