Cho hình hộp chữ nhật ABCD.A' B' C' D' có tổng diện tích của tất cả các mặt là 36, độ dài đường chéo AC' bằng 6

Câu hỏi :

Cho hình hộp chữ nhật ABCD.A' B' C' D' có tổng diện tích của tất cả các mặt là 36, độ dài đường chéo AC' bằng 6. Hỏi thể tích của khối hộp lớn nhất là bao nhiêu?

A. 8

B. 82

C. 162

D. 243

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Giả độ dài các cạnh của khối hộp lần lượt là a; b; c khi đó T = 2ab + 2bc + 2ca = 36. 

ab+bc+ca=18. Mặt khác AC'=AB2+AD2+AA'2=a2+b2+c2=6 

Khi đó a2+b2+c2=36ab+bc+ca=18a+b+c2=72ab+bc+ca=18a+b+c=62ba+c+ac=18 

Ta có: V=abc=b.18-ba+c=b18-b62-b=b3-62b2+18b=fb 

Xét fb=b3-62b2+18b,0<b<62 ta có : f'b=3b2-122b+18=0b2-4b2+6=0 

[b=32b=3f32=0;f2=82Max(0;62)fb=82.

Copyright © 2021 HOCTAP247