Có tất cả bao nhiêu cặp số thực (x;y) sao cho

Câu hỏi :

Có tất cả bao nhiêu cặp số thực (x;y) sao cho x[-1;1] và lnx-yx-2017y+e2018. Biết rằng giá trị lớn nhất của biểu thức P=e2018y+1x2-2018x2 với x;yS đạt được tại x0;y0. Mệnh đề nào sau đây đúng?

A. x0-1;0

B. x0=-1

C. x0=1

D. x0[0;1)

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có lnx-y2-2017x=lnx-yy-2017y+e2018x-ylnx-y-2017x-y=e2018 

lnx-y-e2018x-y-2017=0. Xét hàm số ft=lnt-e2018t-2017,có f't=1t+e2018t2>0;t>0

Suy ra f(t) là hàm số đồng biến trên 0;+ mà fe2018=0t=x-y=e2018

Khi đó P=e2018x1+x-e2018-2018x2gx 

Lại có g'x=e2018xx2019+2018x-2018e2018-4036xg''<0;x-1;1 

Nên g'(x) là hàm số nghịch biến trên [-1;1] mà g'-1=e-2018+2018>0

g'0=2019-2018e2018<0 nên tồn tại x0-1;0 sao cho g'x0=0

Vậy max-1;1gx=gx0 hay giá trị lớn nhất của P đạt được khi x0-1;0.

Copyright © 2021 HOCTAP247