Trên mặt phẳng tọa độ Oxy, xét tam giác vuông OAB với A chạy trên trục hoành và có hoành độ dương; B chạy trên trục tung

Câu hỏi :

Trên mặt phẳng tọa độ Oxy, xét tam giác vuông OAB với A chạy trên trục hoành và có hoành độ dương; B chạy trên trục tung và có tung độ âm sao cho OA + OB = 1. Hỏi thể tích lớn nhất của vật thể tạo thành khi quay tam giác OAB quanh trục Oy bằng bao nhiêu?

A. 4π81

B. 25π27

C. 9π4

D. 17π9

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Khi quay OAB quanh trục Oy, ta được hình nón có bán kính đáy r = OA và chiều cao h = OB. Theo bài ra, ta có OA + OB = r + h = 1 với (0 < r, h < 1) 

Khi đó, thể tích khối nón là VN=13πr2h=13πr21-r.

 Ta có r21-r2=4.r2.r2.1-r4.r2+r2+1-r327=427VN13π.427=4π81

Tham khảo: Ta có thể đưa điểm B có tung độ âm về tung độ dương thì thể tích của khối nón không đổi.

Gọi Aa;0B0;ba,b>0 suy ra phương trình đường thẳng AB:xy+yb=1x=a-ab.y

Khi đó VOy=π.aba-aby2dy=πa2b3.

 Ta có 4π3.a2.a2.b4π3.a2+a2+b327=4π81VMax=4π81.

Copyright © 2021 HOCTAP247