Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;1), B(3;0;-1), C(0;21;-19) và mặt cầu

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;1;1), B(3;0;-1), C(0;21;-19) và mặt cầu S:x-12+y-12+z-12=1. M(a;b;c) là điểm thuộc mặt cầu (S) sao cho biểu thức T=3MA2+2MB2+MC2 đạt giá trị nhỏ nhất. Tính tổng a + b + c.

A. a + b + c = 0

B. a + b + c = 12

C. a + b + c = 125

D. a + b + c = 154

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Gọi điểm Ix;y;z sao cho 3IA¯+2IB¯+IC¯=0¯ suy ra điểm I(1;4;-3) 

Xét mặt cầu S:x-12+y-12+z-12=1 có tâm E(1;1;1) và bán kính R = 1. 

Suy ra IE¯=(0;-3;4)IE=5>R=1. Ta có T=3MA¯2+2.MB¯2+MC¯2=3.MI¯+IA¯2+2.MI¯+IB¯2+MI¯+IC¯2 

=6.MI2+2.MI¯.3IA¯+2IB¯+IC¯+3IA2+2IB2+IC2=6MI2+3IA2+2IB2+IC2

Để tổng T đạt giá trị nhỏ nhất khi và chỉ khi MI nhỏ nhất vì tổng 3IA2+2IB2+IC2 không đổi. Suy ra M, E, I thẳng hàng mà IE = 5 và EM = 1 nên 5.EM¯=EI¯

Lại có EI¯=0;3;-4 và EM¯=a-1;b-1;c-1 suy ra a=15b-1=35c-1=-4a+b+c=154.

Copyright © 2021 HOCTAP247