Cho dãy số (un) thỏa mãn log^3 u1 - 2log^2 u1 + log u1 - 2 = 0 với mọi n > bằng 1

Câu hỏi :

Cho dãy số un thỏa mãn log3u1-2log2u1+logu1-2=0 với mọi n1. Giá trị nhỏ nhất của n để un>100100-10 bằng:

A. 326

B. 327

C. 225

D. 226

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Đặt t=logu1, khi đó giả thiếtt3-2t2+t-2=0t-2t2+1=0t=2logu1=2 

Ta có un+1=2un+10un+1+10=2un+10vn+1=2vn với vn=un+10 

Dễ thấy vn+1=2vn là một cấp số nhân với công bội q=2vn=v1.2n-1 

logu1=2u1=102=100 suy ra v1=u1+10=110vn=100.2n-1 

Khi đó un=vn-10=100.2n-1-10>10100-102n-1>1098n>log21098+1=326,54 

Vậy giá trị nhỏ nhất của n cần tìm là nmin=327.

Copyright © 2021 HOCTAP247