Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn

Câu hỏi :

Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f(x)>0,. Biết f(0) = 1 và f'xfx=2-2x. Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.

A. m > e

B. 0<m1

C. 0 < m < e

D. 1 < m < e

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Với fx>0,x. Xét biểu thức f'xfx=2-2x* 

Lấy nguyên hàm 2 vế (*), ta được dfxfx=2-2xdx

dfxfx=-x2+2x+Clnfx=-x2+2x+C 

Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó fx=e-x2+2x 

Xét hàm số fx=e-x2+2x trên -;+, có f'x=-2x+2=0x=1

Tính giá trị f1=e;limx-fx=0;limx-fx=0 

Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt 0<m<e.

Copyright © 2021 HOCTAP247