Cho lăng trụ tam giác đều ABC.A’B’C’ cạnh đáy bằng a, chiều cao bằng 2a. Mặt phẳng P qua B

Câu hỏi :

Cho lăng trụ tam giác đều ABC.A’B’C’ cạnh đáy bằng a, chiều cao bằng 2a. Mặt phẳng (P) qua B¢ và vuông góc AC¢ chia lăng trụ thành hai khối. Biết thể tích của hai khối là V1,V2 với V1<V2. Tỉ số V1V2:

A. 123

B. 147

C. 111

D. 17

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Gọi M là trung điểm A’C’. Ta có B'MACC'A'B'MA'C.

Suy ra MmpP. Kẻ MNA'C(NAA')NmpP 

Thiết diện cắt bởi mặt phẳng (P) và lăng trụ là tan giác B’MN

Hai tam giac A’C’C và NA’M đồng dạng A'N=12A'M=a4 

Thể tích tứ diện A'B'MN là V1=13A'N.SA'B'M=a3396 

Thể tích lăng trụ là V=AA'.SABC=a332. Vậy V1V2=147.

Copyright © 2021 HOCTAP247