Cho biết với mỗi u>0 phương trình t^2+ut-8=0 có nghiệm dương duy nhất

Câu hỏi :

Cho biết với mỗi u0 phương trình t3+ut-8=0có nghiệm dương duy nhất f(u). Hãy tính 07f2udu

A. 312

B. 332

C. 352

D. 372

* Đáp án

A

* Hướng dẫn giải

Xét hàm số ht=t3+ut-8

Ta có h't=3t2+u>0 với mọi t > 0. Do đó h là hàm đồng biến trên khoảng 0;+

Mặt khác h0=-8;h2=2u>0 nên tồn tại duy nhất c0;2  suy cho h(c) = 0

Với mỗi 0<x2 ta có ux=8-x3x0 . Suy ra x3+ux.x-8=0. Do đó x là nghiệm dương của phương trình t3+ux.t-8=0. Do tính duy nhất của nghiệm ta suy ra fux=x

Ta có u'x=-8x2-2x

Khi x = 2 thì u = 0 và khi x = 1 thì u = 7. Áp dụng công thức đổi biến ta có

07f2udu=-01f2uxdx=028+2x3dx=312

Đáp án A

Copyright © 2021 HOCTAP247