Từ các chữ số {0;1;2;3;4;5;6} viết ngẫu nhiên một số tự nhiên

Câu hỏi :

Từ các chữ số {0;1;2;3;4;5;6} viết ngẫu nhiên một số  tự  nhiên gồm 6 chữ  số  khác nhau có dạng a1a2a3a4a5a6. Tính xác suất để viết được các số thỏa mãn điều kiện a1 + a2 = a3 + a4 = a5 + a6

A. p=5158

B. p=4135

C. p=485

D. p=320

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Phương pháp: Xét các trường hợp:

TH1: 

TH2: 

TH3: 

Cách giải:

TH1: , ta có 0 + 5 = 1 + 4 = 2 + 3 = 5

- Nếu (a1;a2) = (0;5) => có 1 cách chọn (a1a2)

Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.

Tương tự (a5a6) có 2 cách chọn.

=>Có 8 số thỏa mãn.

- Nếu (a1;a2) ≠ (0;5) =>có 2 cách chọn (a1a2),2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.

Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.

Tương tự (a5a6) có 2 cách chọn.

=>Có 32 số thỏa mãn.

Vậy TH1 có: 8 + 21 = 40 số thỏa mãn.

TH2: ta có 0+6=1+5=2+4=6

Tương tự như TH1 có 40 số thỏa mãn.

TH3: , ta có 1+6-2+5=3+4=7

Có 3 cách chọn (a1a2) , hai số này có thể đổi chỗ cho nhau nên có 6 cách chọn.

Tương tự có 4 cách chọn (a3a4) và 2 cách chọn (a5a6).

Vậy TH3 có 6.4.2 = 48 số thỏa mãn.

Vậy có tất cả 40 +40 +48 = 128 số có 6 chữ số khác nhau thỏa mãn  

Để viết một số có 6 chữ số khác nhau bất kì có 6.6.5.4.3.2 = 4320 số.

Vậy p=1284320=4135

Copyright © 2021 HOCTAP247