Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 1, BC = 2

Câu hỏi :

Cho hình hộp chữ  nhật ABCD.A’B’C’D’ có AB = 1, BC = 2, AA’ = 3. Mặt phẳng (P) thay đổi và luôn  đi  qua  C’, mặt phẳng (P) cắt các tia  AB, AD, AA’ lần lượt tại E, F, G (khác  A). Tính  tổng T = AE + AF + AG sao cho thể tích khối tứ diện AEFG nhỏ nhất.

A. 15

B. 16

C. 17

D. 18

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Phương pháp: Sử dụng phương pháp tọa độ hóa.

Cách giải:

Gắn hệ trục Oxyz, có các tia Ox, Oy, Oz lần lượt trùng với các tia AB, AD, AA’.

A(0;0;0), B(1;0;0), C(1;2;0), D(0;2;0), A’(0;0;3), B’(1;0;3), C’(1;2;3), D’(0;2;3)

(P) cắt các tia AB, AD, AA’ lần lượt tại E, F, G (khác A). Gọi E(a;0;0), F(0;b;0), G(0;0;c), (a,b,c > 0)

Phương trình mặt phẳng (P): xa+yb+cz=1

Thể tích tứ diện AEFG: 

Ta có: 

=>Vmin = 27 khi và chỉ khi 

Khi đó, T = AE + AF + AG = a + b + c = 3 + 6 + 9 = 18

Copyright © 2021 HOCTAP247