Cho hàm số y=f(x) có đúng ba điểm cực trị

Câu hỏi :

Cho hàm số y=f(x) có đúng ba điểm cực trị là 0, 1, 2 và có đạo hàm liên tục trên . Khi đó hàm số y=f4x4x2 có bao nhiêu điểm cực trị?

A. 5

B. 2

C. 3

D. 4

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Theo đề bài y=f(x) thì có đúng ba điểm cực trị là 0,1, 2 và y=f'(x) liên tục trên

f'x=0x=0x=1x=2ux=0; với ba nghiệm 0; 1; 2 là nghiệm đơn hoặc bội lẻ,

còn u(x)=0 chỉ có nghiệm bội chẵn không thuộc tập 0;1;2

Đặt gx=f4x4x2, ta có:

g'x=48xf'4x4x2.

g'x=048x=0f'4x4x2=0

g'x=048x=04x4x2=04x4x2=14x4x2=2u4x4x2=02x1=0xx1=02x12=0u4x4x2=0x=0x=1x=12u4x4x2=0

+) Xét phương trình u4x4x2=0.

Giả sử a là một nghiệm của phương trình u(x)=0 thì từ a0;1;2 ta thấy phương trình 4x4x2=a không có nghiệm nào thuộc tập 0;12;1. Suy ra các nghiệm x=0;x=1 là nghiệm đơn còn x=12  là nghiệm bội 3 của phương trình f'4x4x2=0

+) Nếu phương trình u4x4x2=0 có nghiệm thì các nghiệm đó cũng là các nghiệm bội chẵn của phương trình f'4x4x2=0

Vậy tập nghiệm đơn, nghiệm bội lẻ của phương trình g(x)=0 là 0;12;1. Do đó, hàm số gx=f4x4x2 có 3 điểm cực trị

Copyright © 2021 HOCTAP247