Cho tứ diện đều ABCD cạnh a. Mặt phẳng

Câu hỏi :

Cho tứ diện đều ABCD cạnh a. Mặt phẳng (P) chứa BC cắt cạnh AD tại E. Biết góc giữa hai mặt phẳng  và  có số đo là α thỏa mãn tanα=527. Gọi thể tích của hai tứ diện ABCE và BCDE lần lượt là V1,V2. Tính tỉ số V1V2.

A. 38

B. 18

C. 35

D. 58

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có: PEBC

Gọi G là trọng tâm tam giác BCD, F là trung điểm của BC và I=AGEF

Do ABCD là tứ diện đều AGBCDAGFD

AG=AD2DG2=a2a332=a63

Mặt khác: ABCD là tứ diện đều nên AFBCAB=AC và DFBCAB=AC AFDBCEFBC

Ta có: EFBCDFBCPDBC=BCEBC,DBC=EF,DF=EFD^ (vì AGFD).

EFD^=α

IG=FG.tanα=a36.527=5a642

Dựng EK//FD,KAG và đặt AEAD=x

Suy ra: AKAG=xAK=xAG=x.a63

EKGD=xEK2FG=xEKFG=2xIKIG=2xIK=2x.IG=2x.5a642

Ta có: AG=AK+IK+IGa63=x.a63+2x.5a642+5a642x=38

V1V1+V2=AEAD=38V1V2=35.

Copyright © 2021 HOCTAP247