Câu hỏi :

Cho số phức z thỏa mãn (z+1)(z¯2i) là một số thuần ảo. Tập hợp điểm biểu diễn số phức z là một đường tròn có diện tích bằng

A. 5π

B. 5π4

C. 5π2

D. 25π

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Gọi M(x;y) là điểm biểu diễn số phức z=x+yi (x,y).

Khi đó (z+1)(z¯2i)=(x+1+yi)x(y+2)i=x2+y2+x+2y(2x+y+2)i là số thuần ảo.

Suy ra: x2+y2+x+2y=0x+122+(y+1)2=54.

Vậy tập hợp điểm biểu diễn số phức z là đường tròn có bán kính R=52S=πR2=5π4.

Copyright © 2021 HOCTAP247