Giả sử  là hai số phức thỏa mãn modun

Câu hỏi :

Giả sử z1, z2 là hai số phức thỏa mãn z123i=1 và z2+2+5i=2 và số phức z thỏa mãn z3i=z1+i. Tìm giá trị nhỏ nhất của biểu thức .

A. 45

B. 25

C. 453

D. 251 

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Gọi M(z1), khi đó z123i=1M(C1) với (C1) là đường tròn tâm I1(2;3) và R1=1.

Gọi N(z2), khi đó z2+2+5i=2N(C2) với (C2) là đường tròn tâm I2(2;5) và R2=2.

Gọi A(z) và z=x+yi, khi đó: z3i=z1+i

(x3)2+(y1)2=(x1)2+(y+1)2x+y2=0.

Suy ra AΔ:x+y2=0. Ta có:

T=AM+AN=(AM+MI1)+(AN+NI2)3AI1+AI23I1I23=453.

Dấu “=” xảy ra khi A=I1I2Δ. Vậy Tmin=453.

Chú ý: Ở bài toán này do I1, I2 khác phía so với  nên dấu “=” xảy ra, nếu trường hợp cùng phía ta phải lấy thêm điểm đối xứng để chuyển về khác phía

Copyright © 2021 HOCTAP247