Trong không gian với hệ tọa độ Oxyz, cho hai

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: x31=y32=z+21; d2: x53=y+12=z21 và mặt phẳng (P): x+2y+3z5=0. Đường thẳng vuông góc với (P), cắt d1 và d2 có phương trình là

A. x21=y32=z13

B. x31=y32=z+23

C. x11=y+12=z3

D. x13=y+12=z1

* Đáp án

* Hướng dẫn giải

Đáp án

Gọi  là đường thẳng cần tìm. Gọi M=Δd1; N=Δd2.

Md1 nên M3t;32t;2+t,vì Nd2 nên N53s;1+2s;2+s.

MN=2+t3s;4+2t+2s;4t+s, (P) có một vec tơ pháp tuyến là n=1;2;3;

ΔP nên n, MN cùng phương, do đó:

2+t3s1=4+2t+2s24+2t+2s2=4t+s3s=1t=2M1;1;0N2;1;3

 đi qua M và có một vectơ chỉ phương là MN=1;2;3.

Do đó  có phương trình chính tắc là x11=y+12=z3.

Copyright © 2021 HOCTAP247