Cho hàm số y=4x-5/x+1 có đồ thị (H). Gọi

Câu hỏi :

Cho hàm số y=4x5x+1 có đồ thị (H). Gọi Mx0;y0 với x0<0 là một điểm thuộc đồ thị (H) thỏa mãn tổng khoảng cách từ M đến hai đường tiệm cận của (H) bằng 6. Tính giá trị biểu thức S=x0+y02?

A. S=0

B. S=9

C. S=1

D. S=4

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Vì điểm M thuộc đồ thị (H) nên y0=4x05x0+1.

Từ đề bài ta có đồ thị hàm số có tiệm cận đứng là x=-1 và tiệm cận ngang là y=4.

Khoảng cách từ điểm Mx0;y0 đến đường tiệm cận đứng bằng x0+1.

Khoảng cách từ điểm Mx0;y0 đến đường tiệm cận ngang bằng y04=4x05x0+14=9x0+1.

Từ đó ta có x0+1+9x0+1=6x0+126x0+1+9=0x0+1=3x0=2Lx0=4TM

Do đó M4;7. Suy ra S=9.

Copyright © 2021 HOCTAP247