Câu hỏi :

Cho hàm số fx=x3+ax2+bx+c. Nếu phương trình f(x)=0 có ba nghiệm phân biệt thì phương trình 2fx.f''x=f'x2 có nhiều nhất bao nhiêu nghiệm?

A. 1 nghiệm

B. 4 nghiệm

C. 3 nghiệm

D. 2 nghiệm

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Xét phương trình 2fx.f''x=f'x22fx.f''xf'x2=0.

Xét hàm số gx=2fx.f''xf'x2 với mọi x.

Ta có: g'x=2f'x.f''x2fxf'''x2f'xf''x=2fx.f'''x.

Mặt khác: 

+ Có f'''x=6.

+ Gọi x1<x2<x3 là ba nghiệm của phương trình: f(x)=0.

Khi đó g'x=02fx.f'''x=0fx=0x=x1x=x2x=x3

Bảng biến thiên:

Ta nhận xét rằng theo giả thiết phương trình f(x)=0 có ba nghiệm phân biệt nên ta có fx=xx1xx2xx3 thì f'x=xx2xx3+xx1xx3+xx1xx2.

Suy ra f'x22=x2x1x2x32<0 nên từ bảng biến thiên ta có đồ thị hàm số y=g(x) cắt trục hoành tối đa tại hai điểm phân biệt nên phương trình g(x)=0 có tối đa hai nghiệm

Copyright © 2021 HOCTAP247