Cho hình chóp tứ giác đều S.ABCD có góc giữa

Câu hỏi :

Cho hình chóp tứ giác đều S.ABCD có góc giữa hai mặt bên (SAD) và (SBC) bằng 60o. Gọi M là trung điểm của cạnh SA (tham khảo hình vẽ). Góc giữa hai mặt phẳng (BCM) và (ABCD) bằng

A. 60o

B. 30o

C. 15o 

D. 45o

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Cách 1: Do AD//BCSADSBC=d//BC

Gọi EF lần lượt là trung điểm của BC, AD

FSdESdSAD,SBC=ESF^=60o

ΔSEF đều.

Đặt AB=EF=aSO=a32

Ta có: BCM,ABCD=MKH^=γ(như hình vẽ)

Với H, K lần lượt là trung điểm của AO, BE. Khi đó:

MH=SO2=a34,HKAB=CHCA=34HK=3a4

Suy ra: tanγ=MHHK=33γ=30o

Cách 2: Gắn hệ trục tọa độ Oxyz như hình vẽ với

Ta có: A1;0;0,B0;1;0,C1;0;0;D0;1;0;S0;0;a với a>0

Ta có: AD=1;1;0AS=1;0;anSAD=AD,AS=a;a;1

BC=1;1;0BS=0;1;anSBC=BC;BS=a;a;1

Suy ra cosSAD,SBC=nSAD.nSBCnSAD.nSBC=2a212a2+1=12

2a2+1=22a212a2+1=22a21a=62a=66

Xét a=62 (với a=66 ta có kết quả tương tự).

Khi đó S0;0;62M12;0;64

Ta có: BC=1;1;0BM=12;1;64nBCM=BC,BM=64;64;32 song song với vectơ 1;1;6

Ta có: nABCD=nOxy=k=0;0;1

Suy ra cosBCM,ABCD=612+12+6.1=32BCM,ABCD=30o

Copyright © 2021 HOCTAP247