Câu hỏi :

Cho hình chóp S.ABC có ABC là tam giác đều cạnh a. Hai mặt phẳng (SAC), (SAB) cùng vuông góc với đáy và góc tạo bởi SC và đáy bằng 60°. Tính khoảng cách h từ A tới mặt phẳng (SBC) theo a

A. h=a155

B. h=a33

C. h=a153

D. h=a35

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Do (SAC)(ABC)(SAB)(ABC)(SAC)(SAB)=SASA(ABC)SC,(ABC)=SCA^=60°

SA=ACtanSCA^=a3.

Gọi I, H lần lượt là hình chiếu vuông góc của A trên BC, SI, khi đó: dA,(SBC)=AH

Tam giác ABC đều cạnh a nên AI=a32

Khi đó xét tam giác SAI: 1AH2=1SA2+1AI2=13a2+43a2=53a2

AH=a155.

Vậy h=dA,(SBC)=a155

Copyright © 2021 HOCTAP247