Câu hỏi :

Cho hình lập phương ABCD.A'B'C'D'. Gọi M, N lần lượt là trung điểm các cạnh AD, CD và P là điểm trên cạnh BB' sao cho BP=3PB'. Mặt phẳng (MNP) chia khối lập phương thành hai khối lần lượt có thể tích V1, V2. Biết khối có thể tích V1 chứa điểm A. Tính tỉ số V1V2

A. V1V2=14

B. V1V2=2571

C. V1V2=18

D. V1V2=2596

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Thiết diện tạo bởi mặt phẳng (MNP) và hình lập phương là ngũ giác MNHPK (như hình vẽ).

Khi đó ta có: V1=VP.BIJVK.AMJ+VH.CIN (*).

Ta có: DMN là tam giác vuông cân tại D.

Suy ra: ΔAMJ, ΔCIN đều là tam giác vuông cân.

Đặt AB=2a, khi đó: AJ=AM=CN=CI=a và PB=3a2.

KAPB=JAJB=a3a=13KA=13PB=a2.

Khi đó HC=KA=a2.

Suy ra: VK.AMJ+VH.CIN=2VK.AMJ=2.16.AK.AJ.AM=2.16.a2.a.a=a36VP.BIJ=16.BP.BI.BJ=16.3a2.3a.3a=9a342*

Thay (2*) vào (*) ta được: V1=9a34a36=25a312

V2=VABCD.A'B'C'D'V1=8a325a312=71a312V1V2=2571.

Copyright © 2021 HOCTAP247