Cho hàm số f(x) liên tục trên R đồng thời

Câu hỏi :

Cho hàm số f(x) liên tục trên R đồng thời thỏa mãn fx+fx=32cosx, với mọi xR. Tính tích phân I=π2π2fxdx?

A. I=π2+2

B. I=3π22

C. I=π13

D. I=π+12

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Đặt t=xdt=dx. Đổi cận x=π2t=π2;  x=π2t=π2

Khi đó, I=π2π2ftdt=π2π2ftdt=π2π2fxdx

Mặt khác: fx+fx=32cosx

Ta có: 2I=π2π2fx+fxdx=π2π232cosxdxI=12π2π232cosxdx

Do fx=32cosx là hàm số chẵn trên đoạn π2;  π2

Nên I=12π2π232cosxdx=2.120π232cosxdx=3x2sinx0π2=3π22.

Copyright © 2021 HOCTAP247