Cho hàm số y=f(x) có đồ thị như hình vẽ

Câu hỏi :

Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây

A. 40

B. 20

C. 21

D. 41

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Từ đồ thị hàm số y=f(x) ta suy ra f(x) có tập xác định D=R\±1 và các giới hạn limx±fx=0, limx1+fx=+, limx1fx=, limx1+fx=+, limx1fx=.

Vì hàm số t=x22x+m xác định trên R nên hàm số y=fx22x+mm xác định x22x+m1x22x+m1

limx±x22x+m=+ nên limx±fx22x+mm=limt+ftm=m

Do đó đồ thị hàm số y=fx22x+mm có đúng một đường tiệm cận ngang là đường thẳng y=-m (về cả 2 phía x+x)

Để đồ thị hàm số y=fx22x+mm có 5 đường tiệm cận thì nó phải có 4 đường tiệm cận đứng.

Điều kiện cần x22x+m=1x22x+m=1 phải có 4 nghiệm phân biệt.

x12=m+2x12=m có 4 nghiệm phân biệt m+2>0m>0m<0.

Điều kiện đủ: Giả sử x1,  x2(x1<x2) là hai nghiệm phân biệt của phương trình x22x+m=1; x3;  x4 là hai nghiệm phân biệt của phương trình x22x+m=1

Xét đường thẳng x=x1, ta có limxx1fx22x+mm=limt1±ftm=±.

Suy ta đường thẳng x=x1 là tiệm cận đứng của đồ thị hàm số y=fx22x+mm.

Tương tự các đường thẳng x=x2, x=x3,  x=x4 cũng là các đường tiệm cận đứng của đồ thị hàm số y=fx22x+mm.

Vậy để đồ thị hàm số y=fx22x+mm có 5 đường tiệm cận thì m<0.

Do mZ và m20;  20 nên có tất cả 20 giá trị của m

Copyright © 2021 HOCTAP247