Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,SD=a172, hình chiếu vuông góc H của S trên (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của đoạn AD. Khoảng cách giữa hai đường HK và SD theo a là

A. a315.

B. a35.

C. a325.

D. a345.

* Đáp án

B

* Hướng dẫn giải

Chọn B.

Ta có SHABCD.

Gọi O là tâm hình vuông ABCD,I là trung điểm BOHI//ACHIBD.

HI=12AC=a24.

ΔABD vuông tại AHD=AH2+AD2=a24+a2=a52.

ΔSHD vuông tại HSH=SD2HD2=17a245a24=a3.

Trong SHI, vẽ HESIESI.

1HE2=1HI2+1SH2=8a2+13a2=253a2HE=a35.

Ta có BDHIBDSHBDSHIBDHE.

HESIHEBDHESBD.

Ta có HK là đường trung bình ΔABDHK//BDHK//SBD.

Do đó dKH,BD=dKH,SBD=dH,SBD=HE=a35.

Copyright © 2021 HOCTAP247