Câu hỏi :

Cho hàm số f(x) liên tục trên và có đồ thị hàm số f'(x) như hình vẽ. Gọi S là tập hợp các giá trị nguyên của tham số m5;5 để hàm số y=fx22mx+m2+1 nghịch biến trên khoảng 0;12. Tổng giá trị các phần tử của S bằng

A. 10

B. 14

C. -12

D. 15

* Đáp án

B

* Hướng dẫn giải

Chọn B.

Dựa vào đồ thị của hàm số f'(x) ta thấy f'x=0x=1x=2 và f'x>0x>2.

Ta có: y'=2x2mf'x22mx+m2+1=2xmf'xm2+1

y'=0xm=0f'xm2+1=0x=mxm2+1=1xm2+1=2

* xm2+1=1xm2=2 phương trình vô nghiệm.

xm2+1=2xm2=1xm=1xm=1x=m+1x=m1

Lại có: f'xm2+1>0xm2+1>2xm2>1xm>1xm<1x>m+1x<m1

Bảng biến thiên:

Do đó, hàm số y=fx22mx+m2+1 nghịch biến trên 0;12m112m0m+112m3212m0

Mà m nguyên và m5;5mS=0;2;3;4;5.

Vậy tổng các phần tử của S là 0+2+3+4+5=14.

Copyright © 2021 HOCTAP247