Với hai số thực dương a,b tùy ý thỏa mãn

Câu hỏi :

Với hai số thực dương a,b tùy ý thỏa mãn log35.log5a1+log32log6b=2. Mệnh đề nào dưới đây đúng?

A. 2a+3b=0

B. a=blog62.

C. a=blog63.

D. a=36b

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Phương pháp giải:

Sử dụng các công thức:

logab.logbc=logac;logaclogab=logbc0<a,b1;c>0

logax+logay=logaxy0<a1,x,y>0

logaxlogay=logaxy0<a1,x,y>0

Giải chi tiết:

Ta có:

log35.log5a1+log32−log6b=2⇔log3alog36−log6b=2⇔log6a−log6b=2⇔log6ab=2⇔ab=36⇔a=36blog35.log5a1+log32−log6b=2⇔log3alog36−log6b=2⇔log6a−log6b=2⇔log6ab=2⇔ab=36⇔a=36b

log35.log5a1+log32log6b=2

log3alog36log6b=2 log6alog6b=2

log6ab=2 ab=36 a=36b

Copyright © 2021 HOCTAP247