Câu hỏi :

Cho hàm số y=ax3+bx2+cx+d có đồ thị như hình bên dưới.

A. 1

B. 0

C. 2

D. 3

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp giải:

- Dựa vào chiều của nhánh cuối cùng suy ra dấu của hệ số a.

- Dựa vào giao điểm của đồ thị hàm số với trục tung suy ra dấu của hệ số d.

- Dựa vào các điểm cực trị suy ra dấu của hệ số b,c

Giải chi tiết:

Vì đồ thị hàm số có nhánh cuối cùng đi xuống nên a<0.

Vì giao điểm của đồ thị hàm số và trục tung nằm phía dưới trục hoành nên d<0.

Dựa vào đồ thị hàm số ta thấy: Hàm số có 2 điểm cực trị trái dấu, và tổng 2 cực trị là số dương.

Ta có y'=3ax2+2bx+c, do đó ac<02b3a>0c>0b>0.

Vậy có 2 số dương là b,c.

Copyright © 2021 HOCTAP247