Cho hàm số đa thức bậc năm y=f(x) có đồ thị

Câu hỏi :

Cho hàm số đa thức bậc năm y=f(x) có đồ thị như hình bên dưới:

A. 13

B. 14

C. 15

D. 8

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Phương pháp giải:

- Đặt t=xf(x), sử dụng tương giao đồ thị hàm số tìm nghiệm t.

- Rút fx=tx, tiếp tục sử dụng tương giao đồ thị hàm số tìm nghiệm x.

Giải chi tiết:

Đặt t=xf(x), phương trình trở thành ft=9t23t3*.

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(xt) và đồ thị hàm số y=9t2.

Ta có đồ thị:

Dựa vào đồ thị hàm số ta thấy phương trình (*) có 4 nghiệm phân biệt t=a2;1t=b0;1t=c1;2t=3

Khi đó ta có fx=tx=ax,a2;11bx,b0;12cx,c1;233x4

Tiếp tục sử dụng tương giao ta có:

- Phương trình (1) có 2 nghiệm phân biệt.

- Phương trình (2) có 4 nghiệm phân biệt.

- Phương trình (3) có 4 nghiệm phân biệt.

- Phương trình (4) có 4 nghiệm phân biệt.

Tất cả các nghiệm là không trùng nhau. Vậy phương trình ban đầu có tất cả 14 nghiệm phân biệt

Copyright © 2021 HOCTAP247