Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AD=a

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AD=a; AB=2a. Cạnh bên SA vuông góc với đáy. Gọi M,N lần lượt là trung điểm của SB và SD. Tính khoảng cách d từ S đến mặt phẳng (AMN)

A. d=a63

B. d=2a

C. d=3a2

D. d=a5

* Đáp án

A

* Hướng dẫn giải

Đáp án A

- Tính thể tích chóp S.ABCD, sử dụng tỉ lệ thể tích Simpson tính thể tích khối chóp VS.AMN.

- Sử dụng công thức VS.AMN=13dS;AMN.SAMNdS;AMN=3VS.AMNSAMN.

- Sử dụng định lí Pytago, định lí đường trung tuyến trong tam giác vuông, tính chất đường trung bình của tam giác tính độ dài các cạnh của tam giác AMN, sau đó sử dụng công thức Hê-rông tính diện tích tam giác AMN: SAMN=pp-AMp-ANp-MN với p là nửa chu vi AMN.

Áp dụng định lí Pytago trong các tam giác vuông SAB, SAD, ABD ta có

SB=SA2+AB2=4a2+4a2=22aSD=SA2+AD2=4a2+a2=5aBD=AB2+AD2=4a2+a2=5a

Khi đó ta có AM=12SB=2a;AN=12SD=a52 (đường trung tuyến trong tam giác vuông).

Ta có: MN là đường trung bình của SBD nên MN=BD2=a52.

Gọi p là nửa chu vi tam giác AMN ta có: p=AM+AN+MN2=2a+a52+a522=2+52a.

⇒ Diện tích tam giác AMN là SAMN=pp-AMp-ANp-MN=a264

Ta có: VS.AMNVS.ABD=SMSB.SNSD=14VS.AMN=14VS.ABD=18VS.ABCD .

VS.ABCD=13SA.SABCD=13.2a.2a.a=4a33VS.AMN=18.4a33=a36 .

Lại có VS.AMN=13dS;AMN.SAMN, do đó dS;AMN=3VS.AMNSAMN=3.a36a264=a63.

Vậy dS;AMN=a63

Copyright © 2021 HOCTAP247