Cho hàm số y=f(x) là hàm đa thức bậc bốn có đồ thị như hình vẽ bên

Câu hỏi :

Cho hàm số y=f(x) là hàm đa thức bậc bốn có đồ thị như hình vẽ bên. Hỏi có bao nhiêu giá trị của tham số m thuộc đoạn [-12;12] để hàm số gx=2fx-1+m có đúng 5 điểm cực trị?

A. 13

B. 14

C. 15

D. 12

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Hàm đa thức y=fx có số điểm cực trị là m+n trong đó m là số điểm cực trị của hàm số y=f(x), n là số giao điểm của đồ thị hàm số y=f(x) và trục hoành.

Xét hàm số gx=2fx-1+m ta có g'x=2f'x-1=0f'x-1=0.

Dựa vào đồ thị hàm số ta thấy: Phương trình f'(x)=0 có 3 nghiệm phân biệt, do đó phương trình f'(x-1)=0 cũng có 3 nghiệm phân biệt, và là 3 nghiệm bội lẻ, nên hàm số gx=2fx-1+m có 3 điểm cực trị.

Để hàm số gx=2fx-1+m có đúng 5 điểm cực trị thì đồ thị hàm số gx=2fx-1+m phải cắt trục hoành tại 2 điểm phân biệt.

2fx-1+m=0fx-1=-m2 phải có 2 nghiệm phân biệt (các nghiệm cắt qua, không tính điểm tiếp xúc).

[-m22-6<-m2-3[m-46m<12

Kết hợp điều kiện đề bài ta có m-12;-46;12, mZ

Vậy có 15 giá trị của m thỏa mãn yêu cầu bài toán.

Copyright © 2021 HOCTAP247