Cho các số thực x,y thỏa mãn 4^x^2 +4y^2 -2^x^2 +4y^2 +1=2^3-x^2 -4y^2 -4^2-x^2 -4y^2

Câu hỏi :

Cho các số thực x,y thỏa mãn 4x2+4y2-2x2+4y2+1=23-x2-4y2-42-x2-4y2. Gọi m, M lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P=x-2y+1x+y+4. Tổng M+m bằng

A. 717

B. 13

C. 12

D. 17

* Đáp án

A

* Hướng dẫn giải

Đáp án A

- Đặt ẩn phụ t=2x2+4y2t1, đưa phương trình về dạng tích, giải phương trình tìm t.

- Tìm mối quan hệ giữa x,y dạng ax2+by2=1.

- Đặt ax=sinαby=cosα, thế vào biểu thức P.

- Quy đồng, đưa biểu thức về dạng Asinα+Bcosα=C. Tìm điều kiện để phương trình có nghiệm, từ đó xác định M, m.

Ta có:

4x2+4y2-2x2+4y2+1=23-x2-4y2-42-x2-4y22x2+4y22-2.2x2+4y2=82x2+4y2-162x2+4y22

Đặt t=2x2+4y2t1, phương trình trở thành:

t2-2t=8t-16t2t2-2t=8t-16t2t3t-2=8t-2t3-8t-2=0t-22t2+2t+4=0t=2tmdot2+2t+4>0t

Với 2x2+4y2=2x2+4y2=1. Khi đó tồn tại α sao cho x=sinα2y=cosα.

Ta có:

P=x-2y-1x+y+4=sinα-cosα-1sinα+12cosα+4Psinα+12Pcosα+4P=sinα-cosα-1P-1sinα+12P+1cosα=-1-4P*

Để P tồn tại giá trị lớn nhất và giá trị nhỏ nhất thì phương trình (*) phải có nghiệm

P-12+12P+12-1-4P2P2-2P+1+14P2+P+116P2+8P+1594P2+9P-10-18-43559P-18+43559M=-18+43559m=-18-43559M+m=-3659

Copyright © 2021 HOCTAP247