Cho các số thực x;y với x lớn hơn bằng 0

Câu hỏi :

Cho các số thực x;y với x0 thỏa mãn ex+3y+exy+1+xy+1+1=exy1+1ex+3y3y. Gọi m là giá trị nhỏ nhất của biểu thức T=x+2y+1. Mệnh đề nào sau đây là đúng? 

A. m2;3.

B. m-1;0.

C. m0;1.

D. m1;2.

* Đáp án

C

* Hướng dẫn giải

Chọn C.

+ Ta có ex+3y+exy+1+xy+1+1=exy1+1ex+3y3yex+3y1ex+3y+x+3y=exy11exy1+xy1*.

+ Đặt ft=et1et+tf't=et+1et+1>0,t. Nên hàm số f(t) đồng biến trên  nên *fx+3y=fxy1. Do đó x+3y=xy1y=x+1x+3T=x+12x+2x+3=gx

g't=14x+320,x0 nên g(x) đồng biến trên 0;+. Suy ra MinT=Min0;+gx=g0=13.

Copyright © 2021 HOCTAP247