Cho tứ diện ABCD có AB,AC,AD đôi một vuông góc với AB=6a, AC=9a,

Câu hỏi :

Cho tứ diện ABCD có AB,AC,AD đôi một vuông góc với AB=6a, AC=9a, AD=3a. Gọi M,N,P lần lượt là trọng tâm các tam giác ABC, ACD, ADB. Thể tích của khối tứ diện AMNP bằng:

A. 2a3

B. 4a3

C. 6a3

D. 8a3

* Đáp án

A

* Hướng dẫn giải

Đáp án A

- Gọi M1,N1,P1 lần lượt là trung điểm của BC,CD,BD sử dụng công thức tỉ lệ thể tích Simpson, so sánh VAMNP và VAM1N1P1.

- Tiếp tục so sánh thể tích hai khối chóp có cùng chiều cao A.M1N1P1 và A.BCD, sử dụng tam giác đồng dạng để suy ra tỉ số diện tích hai đáy.

- Tính thể tích khối tứ diện ABCD là VABCD=16AB.AC.AD, từ đó tính được VAMNP

Gọi M1,N1,P1 lần lượt là trung điểm của BC,CD,BD ta có AMAM1=ANAN1=APAP1=23.

Khi đó VAMNPVAM1N1P1=AMAM1.ANAN1.APAP1=827.

Dễ thấy ΔM1N1P1 đồng dạng với tam giác DBC theo tỉ số k=12 nên SM1N1P1SDBC=14.

Mà hai khối chóp A.M1N1P1 và A.BCD có dùng chiều cao nên VA.M1N1P1VABCD=SM1N1P1SDBC=14.

Lại có VABCD=16AB.AC.AD=16.6a.9a.3a=27a3VA.M1N1P1=14VABCD=27a34.

Vậy VAMNP=827VAM1N1P1=827.27a34=2a3

Copyright © 2021 HOCTAP247