Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC=2a

Câu hỏi :

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC=2a. Hình chiếu vuông góc của A' trên mặt phẳng (ABC) là trung điểm H của cạnh AB và A'A=a2. Thể tích của khối lăng trụ đã cho bằng

A. a33

B. 2a32

C. a362

D. a366

* Đáp án

C

* Hướng dẫn giải

Đáp án C

- Sử dụng tính chất tam giác vuông cân tính độ dài hai cạnh góc vuông.

- Sử dụng định lí Pytago trong tam giác vuông tính độ dài đường cao A'H.

- Sử dụng công thức tính thể tích khối lăng trụ VABC.A'B'C'=A'H.SABC

Vì tam giác ABC vuông cân tại B nên AB=BC=AC2=a2.

Gọi H là trung điểm của AB, ta có A'HABC và AH=BH=12AB=a22.

A'HABCA'HAH nên tam giác A'AH vuông tại H. Áp dụng định lí Pytago ta có:

A'H=AA'2-AH2=a22-a222=a62

Ta có: SABC=12AB.BC=12.a2.a2=a2.

Vậy VABC.A'B'C'=A'H.SABC=a62.a2=a362

Copyright © 2021 HOCTAP247