Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh a, SO

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh a, SO vuông góc với mặt phẳng (ABCD) và SO+a. Khoảng cách giữa SC và AB bằng

A. 2a55

B. a315

C. a55

D. 2a315

* Đáp án

A

* Hướng dẫn giải

Đáp án A

- Sử dụng định lí: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này tới mặt phẳng song song và chứa đường thẳng kia.

- Đổi tính khoảng cách từ chân đường vuông góc với mặt phẳng, sử dụng công thức AA'P=MdA;PdA';P=AMA'M.

- Dựng khoảng cách, sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.

Ta có AB//CDAB//SCDSCdAB;SC=dAB;SCD=dA;SCD

Mà AOSCD=CdA;SCDdO;SCD=ACOC=2dA;SCD=2dO;SCD

Gọi M là trung điểm của CD.

Vì OM là đường trung bình của tam giác ACDOM//ADOMCD và OM=12AD=a2.

Ta có: CDOMCDSOCDSOM.

Trong (SOM) kẻ OHSMHSM ta có OHSMOHCDCDSOMOHSCD

dO;SCD=OHdAB;SC=2OH

Áp dụng hệ thức lượng trong tam giác vuông SOM ta có OH=SO.OMSO2+OM2=a.a2a2+a24=a55

Vậy dAB;SC=2OH=2a55

Copyright © 2021 HOCTAP247