Câu hỏi :

Cho bất phương trình log3x2x+2+1log3x2+x+m3. Có bao nhiêu giá trị nguyên của tham số m để bất phương trình đã cho nghiệm đúng với mọi giá trị của x thuộc đoạn [0;6]

A. 6

B. 5

C. 4

D. 3

* Đáp án

C

* Hướng dẫn giải

Chọn C.

log3x2x+2+1log3x2+x+m3 x0;6

x2x+23x2+x+m3>0, x0;6

x2+x+m3>02x24xm+90, x0;6

m>x2x+3mx24x+9, x0;6 1

Ta có x2x+33, x0;6. Dấu “=” xảy ra khi x=0

Suy ra max x0;6x2x+3=3.

Lại có 2x24x+9=2x12+77, x0;6. Dấu “=” xảy ra khi x=1

Suy ra min x0;62x24x+9=7.

Vậy 1m>3m73<m7. Vì m nên ta được m4;5;6;7 (4 giá trị nguyên).

Copyright © 2021 HOCTAP247