Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy lớn là AD, các đường thẳng SA,AC và CD đôi một vuông góc với nhau SA=AC=CD=2a và AD=2BC. Khoảng cách giữa hai đường thẳng AD=2BC. Khoảng cách giữa hai đường thẳng SB và CD bằng

A. a105.

B. a102.

C. a52.

D. a55.

* Đáp án

A

* Hướng dẫn giải

Chọn A

Ta có SAACSACDSAABCD.

Gọi M là trung điểm AD

Do SA=AC=CD=2a nên tam giác ACD vuông cân tại C suy ra CMAD, AD=2AC=2a, CM=AM=12AD=a.

Từ đó ABCM là hình vuông suy ra ABAD.

Lại có CD//BMCD//SBMdCD,AB=dD,SBM=dA,SBM

Gọi O=ACBM

Trong mặt phẳng (SAO): kẻ AKSO 1

Ta có: BMSABMCA

BMSAOBMAK 2

Từ (1) và 2AKSBM

dA,SBM=AK=SA.AOSA2+AO2=a105.

Có thể tính khoảng cách nhanh theo công thức AB;AM;AS đôi một vuông góc thì dA,SBM=SA.SB.SMSA2.SB2+SB2.SM2+SM2.SA2=a105.

Copyright © 2021 HOCTAP247