Câu hỏi :

Cho tứ diện ABCD có DAB^=CBD^=900,AB=2a,AC=25a và ABC^=1350. Góc giữa hai mặt phẳng (ABD) và (BCD) bằng 300. Thể tích của khối tứ diện ABCD bằng

A. 42a33.

B. 42a3.

C. 4a33.

D. 43a33.

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Gọi H là hình chiếu vuông góc của D trên mặt phẳng (ABC)

Ta có: ABDHABADABAH

Mặt khác: CBDHCBBDCBBH

Tam giác ABH vuông tại A,AB=2a,ABH^=450ΔABH vuông cân tại AAH=AB=2a;BH=2a2.

Áp dụng định lí cosin, AC2=AB2+BC22.AB.BC.cosABC^

BC2+AB22.AB.BC.cosABC^AC2=0BC2+2a2BC16a2=0BC=22a

SABC=12.AB.BC.sin1350=12.2a.22a.22=2a2

Dựng HEDAHFDBHEDAB;HFDCB

Suy ra DAB;DCB^=HE,HF^=EHF^. Tam giác EHF vuông tại F.

Đặt DH=x khi đó EH=DH.AHDH2+AH2=2ax4a2+x2,FH=2a2x8a2+x2

cosEHF^=EHEF=32=8a2+x224a2+x264a2+x2=48a2+x2x=2a.

Vậy thể tích của khối tứ diện ABCD:VS.ABCD=13.SABC.DH=13.2a2.2a=4a33.

Copyright © 2021 HOCTAP247