Cho số tự nhiên n thỏa mãn C 0 n+C 1 n+C 2 n=11 số hạng chứa x^7

Câu hỏi :

Cho số tự nhiên n thỏa mãn Cn0+Cn1+Cn2=11. Số hạng chứa x7 trong khai triển của x3-1x2n bằng

A. -4

B. 9x2

C. -4x7

D. -12x7

* Đáp án

C

* Hướng dẫn giải

Đáp án C

- Sử dụng công thức Cnk=n!k!n-k!, giải phương trình Cn0+Cn1+Cn2=11 tìm n.

- Sử dụng khai triển nhị thức Niu-tơn a+bn=k=0nCnkan-kbk.

- Để tìm số hạng chứa x7 ta cho số mũ của x trong khai triển bằng 7, giải phương trình tìm k. Với k vừa tìm được ta suy ra số hạng chứa x7

Ta có:

Cn0+Cn1+Cn2=11n2,nN1+n+nn-12=112+2n+n2-n=22n2+n-20=0

[n=4tmn=-5ktm

Khi đó ta có x3-1x24=k=04C4kx34-k-1x2k=k=04C4k-1kx12-5k0k4;kN.

Để tìm số hạng chứa x7 ta cho 12-5k=7k=1tm.

Vậy số hạng chứa x7 trong khai triển trên là C41.-11x7=-4x7

Copyright © 2021 HOCTAP247