Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt thuộc các cạnh SA,SD sao cho 3SM=2SA,3SN=2SD. Mặt phẳng α chứa MN cắt cạnh SB,SC lần lượt tại Q,P. Đặt SQSB=x,V1 là thể tích của khối chóp S.MNPQ, V là thể tích khối chóp S.ABCD. Tìm x để V1=12V.

A. x=2+586.

B. x=1+414.

C. x=1+334.

D. x=12.

* Đáp án

A

* Hướng dẫn giải

Chọn A.

Cách 1.

Ta có V1=VS.MNPQ=VS.MNQ+VS.PNQ

Ta có αSBC=PQMN//BCMNαBCSBCPQ//MN//BCSPSC=SQSB=x.

Có VS.MNQVS.ADB=SMSA.SNSD.SQSB=23.23x=49xVS.MNQ=4x9VS.ADB=4x9.V2=2x9V.

Đồng thời VS.PNQVS.CDB=SPSC.SNSD.SQSB=x.23.x=2x23VS.PNQ=2x23.VS.CDB=2x23.V2=x23V.

Như vậy V1=x23+2x9V. Mà theo giả thiết ta có V1=12V nên ta suy ra:

x23+2x9=12x=2+586Nhanx=2586Loai. Vậy x=2+586.

Cách 2:

Đặt a=SMSA=23;b=SNSD=23;c=SPSC. Ta có 1a+1c=1b+1xc=x.

Lại có V1V=abcx41a+1b+1c+1x=x293+2x.

Mà V1V=126x3+4x29x=0x=0Loaix=2+586Nhanx=2586Loai.

Vậy x=2+586.

Copyright © 2021 HOCTAP247