Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình vuông A'B'C'D' và M là điểm

Câu hỏi :

Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình vuông A'B'C'D' và M là điểm thuộc đoạn thẳng OI sao cho MO=2MI. Khi đó côsin của góc tạo bởi hai mặt phẳng (MC'D') và (MAB) bằng

A. 68585

B. 61365

C. 78585

D. 171365

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp giải:

- Sử dụng định lí: Góc giữa hai mặt phẳng là giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Xác định góc giữa hai mặt phẳng, sử dụng định lí Pytago và định lí Côsin trong tam giác để tính góc.

Giả sử ABCD.A'B'C'D' là khối lập phương có cạnh bằng 1

Dễ thấy BC'EF là hình bình hành nên EF=BC'=2.

Áp dụng định lí Côsin trong tam giác MEF ta có

Mà góc giữa hai mặt phẳng là góc nhọn, có giá trị côsin là số dương.

Vậy cosMC'D';MAB=78585

Copyright © 2021 HOCTAP247