Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x)

Câu hỏi :

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên m-2021;2021 để hàm số gx=fx+m nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?

A. 2019

B. 2022

C. 2021

D. 2020

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp giải:

- Tính g'(x).

- Giải phương trình g'(x)=0, xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).

- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.

- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.

Giải chi tiết:

Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp  có 2021 phần tử.

Copyright © 2021 HOCTAP247