Câu hỏi :

Cho hàm số fx=2sinx. Biết F(x) là một nguyên hàm của hàm số f(x) thỏa mãn Fπ2=0. Giá trị lớn nhất của hàm số gx=eFx trên đoạn π6;2π3 bằng

A. 3

B. 13.

C. 743.

D. 7+43.

* Đáp án

A

* Hướng dẫn giải

Chọn A.

Cách 1:

Ta có: Fx=2dxsinx=2dx2sinx2cosx2=dxcos2x2.tanx2=2dtanx2tanx2=2lntanx2+C.

Fx=2lntanx2+C.

Mà Fπ2=02lntanπ4+C=0C=0Fx=2lntanx2=lntanx22.

gx=eFx=tan2x2g'x=tanx2.1+tan2x2>0,xπ6;2π3.

Do đó hàm số g(x) đồng biến trên π6;2π3 nên maxπ6;2π3gx=g2π3=tanπ32=3.

Vậy giá trị lớn nhất của hàm số g(x) trên đoạn π6;2π3 bằng 3.

Cách 2:

Ta có g'x=F'x.eFx=2sinx.eFx>0,xπ6;2π3.

maxπ6;2π3gx=g2π3=eF2π3=eFπ2+π22π32dxsinx=3.

Vậy giá trị lớn nhất của hàm số g(x) trên đoạn π6;2π3 bằng 3

Copyright © 2021 HOCTAP247